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The linear stability of a dynamical system is governed by the variational equations. Making a
linear change of variables in the variational equations and interpreting the transformation matrix
to be a function of position in state space leads to a linear partial differential equation for the
transformation matrix. The known solutions to the constant coefficient and periodic coefficient
cases are shown to be natural consequences of this formulation. In the general case, for recursive
dynamical systems a series of eigenvalue problems can be formulated, leading to stability exponents
in the limit as time approaches infinity. A correlation method is offered which can reconstruct the
missing multiples of 2w necessary to calculate the imaginary part. Numerical applications to the
two-dimensional restricted three-body problem show that the imaginary parts of the new stability
exponents are the winding numbers of the trajectory. In the three-dimensional restricted problem,
the additional stability exponents match vertical oscillation frequencies.

PACS number(s): 03.20.+i, 46.10.+z

I. INTRODUCTION

A general dynamical system can be written as a set of
vector differential equations

X = £(X). (1)

We have written the system (1) as an autonomous sys-
tem. If it is not, defining Xnx1 = t and appending
XN+1 = 1 to the above will make it autonomous. The
system will be assumed to have this property from here
onward. Once a trajectory X(t) is obtained, the ques-
tion of stability naturally arises. If x represents the first
order displacement from the known trajectory, then the
variational equations specify the evolution of x:

of
xX= = x = A(t)x. (2)
OX |x ()

The properties of the solutions to (2) give the linear sta-
bility of the trajectory X(t) of the system (1). The so-
lution to (2) can be written in terms of the fundamental
matrix ®(¢,t9) as

x(t) = ®(¢,t0)x(t0), (3)
where the fundamental matrix itself obeys

b= A(t)®, ®(to,to) = 1. (4)

Notice that the above is just a matrix form of (2), with
special initial conditions.

The full solutions to the constant coefficient and peri-
odic coefficient cases of (2) are known, and both of these
cases admit of complex-valued stability exponents. In the
general case, Lyapunov exponents determine linear sta-
bility properties, but have the unusual property of being
purely real.

II. A LINEAR TRANSFORMATION

Consider making a change of variable from x to y in

(2). If
x = E(t)y, (5)

where E(t) is a matrix, then substitution into the varia-
tional equations leads to

y=E1 (AE - E) y = Qy. (6)

Both the transformation matrix £ and the new system
matrix ) are as yet undetermined. For ease of solution
of the new system y = Qy, it would be very desirable
if © could be a diagonal matrix. It would be even more
desirable if € were constant, since then we could write
the solution to (6) as

y(t) = exp [Q(t — to)] ¥ (to)- (7)

Using (7) and (5), and observing the initial condition on
® from (4), this implies a factorization of the fundamen-
tal matrix in the form

B(t,to) = E(t) exp [t — to)] E~1(to). (8)

Notice that since the E matrices to the right and left
above are evaluated at different times, this is not the
eigenvalue-eigenvector factorization studied by Wiesel
[1]. To force all stability information into €2, it is also
desirable that E(t) be strictly bounded. Rearranging (6)
produces

E = AE — EQ, (9)

a relation that is familiar from Floquet theory. In Flo-
quet’s solution for time-periodic A(t) systems, the F(t)
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matrix is periodic (and therefore bounded), while 2 is (at
worst) a constant Jordan form with Poincaré exponents
as its diagonal entries.

However, suppose that we were to consider the matrix
E not as a function of time, but as a function of posi-
tion in the state space X. This is trivially compatible
with the constant coefficient case of (2), which arises at
equilibrium points. The standard E matrix in this case
is the matrix of eigenvectors of A and is associated with
one point in state space X. It is also compatible with the
Floquet solution for periodic systems, where the periodic
E(t) matrix is associated with one particular point X(t)
on the periodic trajectory. Since E(X) is assumed non-
singular, this makes E a local coordinate basis at each
point in the space. Note that not only is f given as a
function of X, but so is A = 9f /90X before its evaluation
on any particular trajectory X(t). It is thus permissi-
ble to consider A = A(X). The matrix 2, on the other
hand, is assumed to be constant, and a property of the
trajectory underlying the linear system (2).

Assuming that the underlying dynamics are an au-
tonomous system, the chain rule gives

. OE, OF

E = 8—)Zx = éif . (10)
Then (9) becomes the first order linear matrix partial
differential equation

OF

—f=AF — EQ. 11

X (11)
Furthermore, assuming 2 is diagonal, (11) can be written
as

Oe

ﬁf =(A—wl)e, (12)
where e is one of the columns of £ and w is the cor-
responding element of the diagonal matrix Q. (The as-
sumption of diagonal {2 can be relaxed to permit a Jordan
form if necessary.)

At this point, notice that we can recover the classi-
cal solution of the constant coefficient case from (12).
Constant coefficient systems arise by linearizing about
an equilibrium point, where f = 0. Then the partial
differential equation (12) reduces to

0=(A-wl)e, (13)

which is just the algebraic eigenvalue problem. We can
satisfy our goals for F and Q by choosing the N e’s to be
the eigenvectors of A while the w’s will be the eigenvalues.

It is also quite simple to recover the Floquet solution.
If the underlying trajectory is periodic in time, it must
join itself in space. If E = F(X) is really to be a func-
tion of position in state space, then F must have the
same value at the end of one period as at the initial
time. We are thus led quite naturally to demanding that
E(t) = E(X(t)) be a periodic matrix when evaluated
along a periodic orbit. Then using (8) and the period-
icity condition E(7 + to) = E(to) after one period T,
Floquet’s eigenvalue problem

[@(T + to, to) — exp(wT)I]e(tg) =0 (14)

is a natural consequence. If the eigenvalues of the mon-
odromy matrix are o;, we have the Poincaré exponents
as

1
;= —Ino;. 15
wi = _lno (15)

Then Eq. (9) can be used to construct the E(t) =
E(X(t)) matrix for one period, completing the Floquet
solution. It is very interesting that both known solutions
arise very naturally as special cases of (12) applied to
equilibrium points and to periodic trajectories.

In the general case the solution is more complicated.
However, one special solution to (12) is easily found. If
the underlying dynamical system is autonomous, then f
is a solution with w = 0. Direct substitution of e = f
into (12) gives

of of

8Xf— 8Xf wf, (186)
remembering that A = 0f/0X. This is obviously an
identity if w = 0.

III. PROXIMITY CONDITIONS

The solution to the constant coeflicient case arises nat-
urally from (12) at an equilibrium point. In the periodic
coefficient case, the assumption that F = E(X) forces
the assumption that E(t) is periodic on a periodic orbit
and leads to Floquet’s solution. In the general case, there
are no such obvious special features. However, many dy-
namical systems are recursive, in the sense that the sys-
tem returns repeatedly to a neighborhood of the initial
point as ¢ — oo. In particular, any trajectory confined
to a bounded region of space without singularities must
inevitably approach its initial conditions many times as
t — oo. In these systems it is possible to extend Flo-
quet’s solution, using a “proximity condition” in place
of the boundary condition E(7 + to) = E(to) in Floquet
theory.

The fundamental difficulty with (12) is that it contains
no information about the evolution of the e vectors in
directions perpendicular to the f vector. However, when
the trajectory returns to a neighborhood of its starting
point, as shown in Fig. 1, this is no longer true. Let ¢ = ¢,
be a time when the trajectory returns to the neighbor-

- hood of the initial point and is closest to it. Then Eq.

(8) can be recast as
B (tc,to)e(to) = e(t:) explw(te — to)]. (17)

Now, since the trajectory has returned to the close prox-
imity of the initial point, and assuming that e = e(X) is
smooth, we are justified in writing

e(t:) =~ e(to) + _83

X |, 6X(t.), (18)
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FIG. 1. Geometry of a return to a neighborhood of the
initial point.

where 60X is small. [Actually, this could well not be true.
On a “strange attractor,” it may well be that E(X) is
not locally smooth. We may speculate that the solutions
to (12) may be “turbulent” in this case. On the other
hand, orbits confined to a torus in a Hamiltonian system
should admit smooth E(X) solutions. We will confine
our attention to such systems in this paper.] Combining
these results produces

{®(tc, to) — explw(t. — to)] }e(to)

= 3_;( X (t.) explw(te — to)]. (19)
to

Notice that as 6X — 0, as it must eventually do as
t — oo, the above reverts to a Floquet eigenvalue-
eigenvector problem. Numerically, however, it is difficult
to extend the calculation this far, particularly in systems
where ® grows unbounded. But in Hamiltonian systems
in particular, |®| = 1 for all time.

Now, with a nonzero right-hand side, Eq. (19) makes
no sense as an extension of the standard eigenvalue-
eigenvector problem. If the right-hand side above is
nonzero, then deterministic solutions for e(to) exist for
any value of w which makes the matriz on the left-hand
stde nonsingular. We are thus led to the approximation

g% . 0X(t.) exp [w(t. — to)] = 0. (20)
The only term in (19) which is “small” is the right-hand
side. While rigorously true in the limit as t — oo, it
is approximately true in any close approach to the ini-
tial state. Furthermore, the stability exponents w calcu-
lated using this approximation will be insensitive to small
changes in t., at least in the neighborhood of the initial
state. However, we will be forced to use a finite neigh-
borhood in numerical applications. If one of the w has a
positive real part, (20) will force the use of a neighbor-
hood radius which decreases exponentially in time. This
is almost certainly not practical, so we expect (20) will
only be useful in systems with a full compliment of purely
imaginary stability exponents.
With the condition (20) imposed, Eq. (19) becomes
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{®(te, to) — exp [w(tc — to)] I}e(to) ~ 0, (21)

which is Floquet’s eigenvalue problem again. It is now
only true in the limit as ¢, — oo and §X(¢.) — 0, how-
ever. The values of w calculated from (21) for finite ¢.
with small but finite X(¢.) will need some further work
to find the true values of w in the limit.

We are now in a position where some earlier assump-
tions can be justified. The desire to have €, and therefore
the w;, constant and characteristic of the particular tra-
jectory can be understood as follows. Consider Fig. 2,
where close recursions occur over the intervals (t2, o)
and (t3, t1). Using the easily derived composition law
for the fundamental matrix, the matrices over these two
intervals can be written as

B(ty, to) = B(ta, t1)B(t1, to), (22)
B(ts, t1) = B(ts, t2)®(ta, t1).

Now, for trajectories confined to a smooth torus, the fact
that the trajectories are within distance € at t; implies
that they remain close over the two intervals (¢o, t1) and
(t2, t3). (Notice that this assumption rules out apply-
ing this argument to strange attractors, where adjacent
trajectories can depart exponentially from each other.)
Since these two arcs of the trajectory lie very close to
each other, we can be assured that

Q(tl, to) ~ q)(t;;, tz). (23)
Then, consider

@(tl, t0)~1¢(t3, tl)Q(tl, to) ~ @(tz, tl)‘}(tl, to)
= ®(tq, to). (24)

This shows that the fundamental matrices ®(t2, to) and
®(t3, t1) are approximately similar. In the limit as ¢ —
0o, this approximation will become better and better.
Now, similar matrices have the same eigenvalues, so the
w values calculated from these different arcs will be, in
the limit, the same. The Q matrix should be constant
and a property of the underlying trajectory.

A similar argument can be made that the w’s calcu-
lated over longer and longer intervals should approach a
limit. In Fig. 3 a second close approach occurs after ap-

FIG. 2. Invariance of the stability exponents to initial
starting time.
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FIG. 3. Calculation of the fundamental matrix at a second
close approach in which the period approximately doubles.

proximately double the initial time interval. Again, the
two arcs of the trajectory lie close together, so

B(ts, to) = B(tz, t1)®(ts, to)
~ B(t1, to)®(t1, to). (25)

Writing ®(t1, to) = F exp[Q(t; — to)|E~1, we have

®(ty, to) =~ Eexp[Q(t1 — to)] exp[Q(t1 — to)|E™1
= Eexp[29(t, — to)]E L. (26)

In words, this says that the stability exponents calculated
over the (approximately) twice as long interval should be
approximately the same as over the shorter interval. The
above also shows that the e vectors should also be nearly
identical. This argument easily extends to other near
multiples of the “period.” Once again, it is the fact that
the trajectories will lie in close proximity over their length
that makes this conclusion possible. Also, as before, on
chaotic structures this may not be true.

IV. NUMERICAL METHODS

Let the initial conditions for a trajectory be X(t0), and
let the state at time ¢t be X(t). The distance between the
initial and current state is

d(t) = [ X(t) = X(to)ll, (27)

where || || is a norm. If the trajectory is bounded in
space, then the function d(t) must experience a series of
maxima and minima. Define a sequence of almost periods
7; as time intervals 7; = t — to, where d(t) experiences a
minimum value which is less than its previous smallest
minimum value. We denote these minimum distances
d(7;) = €;. On this sequence, we have

lim ¢; =0,

Jm lim 7; = oo. (28)

11— 00

The orbit comes closer and closer to actually closing on
itself. This is true mathematically, but in numerical cal-
culation error can accumulate, perhaps causing the dis-
tance d(t) to become bounded from below. An alternate
approach, and one that we will follow, is to pick a suitably
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small €, and then process all times 7; at which d(t) = 0
and d(t) <e.

We are thus led to a sequence of Floquet problems for
the sequence of almost periods. If the sequence of w;(7;)
calculated for the almost period sequence 7; converge to
limits, then we are justified in calling the w;(oo) the sta-
bility exponents of the trajectory. In fact, they will be
Lyapunov exponents. Unfortunately, the imaginary part
of the stability exponent calculated from (15) and (21)
is uncertain to within an arbitrary multiple of 27. If we
do not try to resolve this difficulty, since the imaginary
part of the natural logarithm obeys —nm < Imlnz < =,
we have

Im wj;| < 50 (29)
Ti
as 7; = oco. But this hardly constitutes a proof that the
imaginary parts are zero. In fact, applying the above on
a periodic orbit at successive multiples of the true period
would lead to a zero imaginary part, even if the actual
Poincaré exponent does have an imaginary part. In order
to calculate an imaginary part over long time intervals,
the correct Reimann sheet must somehow be used in the
complex logarithmic function.

Assume that we have found N almost periods and have
calculated the eigenvalues o;(7;) of the fundamental ma-
trix ® at these times. Considering (15) and (21), their
logarithms should be approximate values of

Inoj(m) = w;T. (30)

(The approximation arises because we are, of necessity,
dealing with finite times.) In practice, the values of w;
calculated at different almost periods will be discordant,
since unknown multiples of 27 are missing on the left-
hand side of the above. To make progress in reconstruct-
ing the missing phase information, consider calculating
Mod(wT;), where the function Mod reduces the range of
the imaginary part of its argument to (—m, m). This is,
of course, just the range produced by the complex log-
arithmic function. Then Ino;(7;) — Mod(w;) should be
small when w (here treated as a free variable) is close to
the true value of w;.

Now consider Inoj;(7;) — Mod(wT;) as a residual.
Among the different eigenvalues o;, there is one eigen-
value which minimizes this residual. Then calculate the
root-mean-square value I'(w) of the residual as a func-
tion of w using the minimizing eigenvalue o; over many
almost periods:

1 N , 1/2
[(w) = {ﬁZ{Minj [Ino;(r:) — Mod(w:)]} } ,

=1

(31)

where Min; chooses the minimum value of the residual
among the different eigenvalues o; of the fundamental
matrix. Considered as a function of w, I should be of
order unity when w is far from the true value of w; and
should be small when w =~ w;. Deep minima in I'(w)
should mark the true values of w.
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V. NUMERICAL EXPERIMENTS

As a first application, we consider the restricted prob-
lem of three bodies discussed by Szebehely [2]. In the
usual dimensionless units, the system Hamiltonian takes
the form

1—p p
(P? + p3) + p1raz — p2q1 — -—, (32
T1 T2

H =

N =

where p is the mass parameter. The two radii from the
third body to the primaries are

r? = (g1 — p)® + ¢, (33)
ri=(@+1-pw’+d

As is well known, this problem possesses periodic orbits,
invariant torii, and chaotic regions.

As a Hamiltonian system with a four-dimensional
phase space and a constant of the motion, it is also
possible to construct surfaces of section. Figure 4
shows a portion of such a surface constructed using
the conventions of Jefferys [3] for ¢ = 1/3 and
H = —1.688 888 888 88. The section criterion is

q141 + q242 = 0. (34)

Knowing values of ¢; and g, the value of the Hamilto-
nian and the section condition supply the values of both
momenta. The central periodic orbit is surrounded by
invariant tori, which terminate in a chaotic region. Em-
bedded within the main structure is another periodic or-
bit and its associated tori, with a period about three
times that of the main orbit. Finally, a small island at
about seven times the fundamental period appears just
outside the point where the main island transitions to
chaos. The figure shows only one of four intersections of
this structure with the plane of section.

The periodic orbits (both stable and unstable) have
been constructed by solving the numerical boundary
value problem. Then Floquet theory can be used to
calculate Poincaré exponents. Since this is a Hamilto-

-0.1 0.0 0.1

FIG. 4. Surface of section for the restricted problem.
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nian system with an integral of the motion, one pair of
Poincaré exponents is zero. The other pair is purely
imaginary on both stable periodic orbits. In this type
of system, the winding number (or rotation number) can
also be calculated, as done by Guckenheimer and Holmes
[4]. This is just the average rotation rate of points as they
successively intersect the surface of section, as seen from
the central periodic orbit. Of course, in the 3:1 resonant
island, the central periodic orbit for that torus must be
used. The winding number agrees with the Poincaré ex-
ponent as either stable periodic orbit is approached.

We have numerically integrated many orbits in this
torus, calculating the eigenvalues of ® at close approaches
to the original conditions. The integrations were usually
to a final time of ¢ = 1000, and any approaches within
€ = 0.03 in the four-dimensional phase space were used.
Plotting the components of the e(ty) vectors as a func-
tion of §X(t.), it appears that the e vectors are indeed
smooth functions of position in the neighborhood of the
initial state. As the fundamental matrix of a Hamiltonian
system is symplectic [5], the logarithms of its eigenvalues
In o; must occur as positive-negative imaginary pairs. In
calculating the root-mean-square residual I'(w), real root
pairs were ignored. Figure 5 shows one plot of I'(w), with
a very obvious high correlation at about w = 0.6636.
This is the winding number for this trajectory. Other
less strong correlations occur near the frequency of the
orbit plus or minus the winding number. The correlation
does not have to be perfect, since in (20) we have approx-
imated small but finite §X(¢.) as zero. This introduces
error that should vanish as t — oo.

Figure 6 shows the winding number (as a solid curve)
and the imaginary stability exponent w (circles) as a func-
tion of initial condition ¢; (with g2 = 0). (Of course,
values of w occur as positive-negative imaginary pairs,
since they are constructed from the eigenvalues of a sym-
plectic Hamiltonian ® matrix. Only the positive value
is shown.) The figure should be compared with Fig. 4
sliced along the g; axis. The 3:1 resonant island is eas-
ily recognized as the separated region in the left center

w (rad/sec)
FIG. 5. Root-mean-square residual I as a function of w for
an orbit with initial conditions ¢ = 0.04, g2 = 0. The large
dip occurs at the winding number for this trajectory.
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FIG. 6. Winding number (solid line) and stability expo-
nents w as a function of initial ¢; value, with an initial g2 = 0.
Planar w values are shown as circles, vertical mode w values
as triangles.

of the plot. Throughout the central torus and the 3:1
island, the winding number and the stability exponent
w agree quite well. In some regions of this figure there
are no values shown for w. In these areas there were so
few values of Ino; appearing among the calculated close
approaches to the initial conditions that the correspon-
dence technique failed to produce a distinct w value. Ev-
erywhere else, the correspondence between the winding
number and the stability exponent w is quite good.

The correspondence of winding numbers with the sta-
bility exponents w defined in this paper is quite encour-
aging, but the real question is whether our technique can
be extended to higher-dimensional phase spaces. Wind-
ing numbers are a geometrical concept and are limited
to systems in which a Poincaré surface of section can
be constructed. For Hamiltonian systems, this requires a
system with a four-dimensional phase space and one inte-
gral of the motion, exactly like the restricted three body
problem. In searching for a higher-dimensional test case,
it would also be helpful if a system could be found in
which the frequencies are already known or can be veri-
fied.

We need look no further than the three-dimensional
restricted three-body problem to meet these needs. The
Hamiltonian is given by

1—p p

1 .
H='2"(pf+P§+P§)+P1QZ—qul— -,
T1 T2

(35)

with radius vectors
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= (- +d+d, (36)

r=(n+1-p’+d+q.
We now have a six-dimensional phase space and will now
have two additional Poincaré exponents at the periodic
orbits, but there is still only one exact integral of the
motion. Winding numbers cannot be constructed in this
case. Furthermore, for infinitesimal g3 values the z dy-
namics decouple from the motion in the g;-¢2 plane. New
stability exponents can then be checked by Fourier trans-
forms of the g3 components of orbits nearly in the g;-¢2
plane.

Figure 6 also shows the w values (as triangles) for the
vertical motion of the orbits in this structure. The value
of w at the central periodic orbit matches that of the
Poincaré exponent, while at the stable 3:1 orbit a multi-
ple of 27 must be added to the logarithm in (15) to match
the adjacent torus and the value of w. Of course, this is
quite permissible. The calculated w points then delin-
eate a continuous function across this structure. Fourier
transforms of the ¢35 component of trajectories very near
the planar orbits shown here confirm that the calculated
w values are indeed the vertical oscillation frequencies.

VI. DISCUSSION AND CONCLUSIONS

The introduction of a linear change of variables to the
equations of variation leads naturally to a partial differ-
ential equation for the transformation matrix when that
matrix is interpreted to be a function of position in space.
This interpretation leads to a very natural recovery of the
constant coefficient and periodic coefficient cases as spe-
cial cases of the general linear system. In the general case,
stability exponents can be defined in recursive dynamical
systems as the “Poincaré ” exponents of the fundamental
matrix at close approaches to the initial conditions. It
has been argued that these exponents should be invariant
to changes in starting point along the trajectory.

In numerical experiments, a correlation technique has
been offered that is very successful in reconstructing the
correct multiples of 2 necessary to correctly construct
the imaginary part of an “extended” Lyapunov exponent.
In applications to the planar restricted problem of three
bodies, the imaginary part of the stability exponent w
appears to be identical to the winding number of the tra-
jectory. Extending the calculations to three dimensions
shows that the technique offered in this paper is able
to calculate imaginary stability exponents even when a
winding number cannot be defined.

One of the advantages of the method is that it extends
to higher orders, where geometric methods such as the
surface of section are not applicable. Indeed, a success-
ful application to a system of order 18 has already been
reported by Wiesel [6], and further work is in progress.
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